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Abstract 

In previous papers, 15 families of minimal balance surfaces 
that can be generated with the aid of disc-like surface 
patches were noted. Recently, it has become apparent that 
the inherent symmetry of two of these families, the C(S) 
surfaces and the Y surfaces, is higher than the symmetry 
used for their generation. As a consequence, C(S) surfaces 
are in fact P surfaces and Y surfaces are in fact D surfaces. 

Triply periodic minimal surfaces are complicated infinite 
geometrical objects that cannot easily be characterized. 
Therefore, finite surface patches are often used for their 
description. To that end, an infinite minimal surface must 
be subdivided into infinitely many congruent finite surface 
patches, all of which are symmetrically equivalent. The 
boundaries of such surface patches should not be too com- 
plicated. The entire infinite surface may be generated from 
one of these surface patches by systematic continuation 
with the aid of symmetry. The point group of the original 
surface patch together with all those symmetry operations 
that allow the continuation of this surface patch beyond 
its boundaries form a set of generators of a space group, 
called the generating symmetry of the surface (Fischer & 
Koch, 1987). Two different minimal surfaces belong to the 
same family if they have been produced by continuation 
of analogous surface patches with the aid of analogous 
symmetry operations. On the other hand, certain less- 

"complicated triply periodic minimal surfaces may be 
formed with the aid of various generating symmetries and 
starting from several dissimilar simple surface patches. In 
that case, the generating symmetry of a minimal surface 
may differ from its inherent symmetry, i.e. the group of all 
symmetry operations that map the surface onto itself. Then 
the generating symmetry is a true subgroup of the respective 
inherent symmetry. 

A well known example illustrating such a situation is 
based on Schwarz's P surface (Schwarz, 1890). Each surface 
of this family may be generated either from a disc-like 
surface patch spanning a skew quadrangle (generating sym- 
metry lm3m-Pm3m) or from another disc-like surface 
patch spanning a skew hexagon ( Fd3 m- F43 m; see Schoen- 
flies, 1891; Andersson, Hyde &von Schnering, 1984; Fischer 
& Koch, 1987; Koch & Fischer, 1992). 

The comparison of two minimal surfaces is facilitated by 
examining their genera. The genus of a triply periodic 
surface must be associated with a finite part of that surface 
since otherwise its value would become infinite. For triply 
periodic minimal surfaces, the genus is associated with a 
primitive unit cell of the space group that describes its 
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inherent symmetry. For a minimal balance surface, i.e. a 
triply periodic intersection-free minimal surface subdivid- 
ing R 3 into two congruent regions, its inherent symmetry 
may be best described by a group-subgroup pair G,-H, of 
space groups with index 2. Then the genus must be associ- 
ated with a primitive unit cell of the subgroup Hi (Fischer 
& Koch, 1989). 

The genera of two distinct triply periodic minimal sur- 
faces from the same family are necessarily equal and the 
equality of the genera is a necessary condition for two triply 
periodic minimal surfaces generated from dissimilar surface 
patches to belong to the same family. Among others, this 
criterion has been used in earlier papers to decide whether 
or not a newly derived minimal balance surface belongs to 
a new family or to a family that is already known. 

If, however, the genus of a minimal (balance) surface is 
calculated erroneously from some generating symmetry 
(Gg-)Hg that differs from the inherent symmetry (G~-)H, 
then the calculated value of the genus may be too high. 
This occurs whenever Fig is not a translation-equivalent 
subgroup of Hi because then the primitive unit cell of Hg 
is larger than that of Hi. 

Such a mistake was made with regard to two families of 
minimal balance surfaces designated C(S) and Y (Fischer 
& Koch, 1987). They have been derived from disc-like 
surface patches, namely skew octagons and skew hexagons, 
respectively. The corresponding generating symmetry is 
la3d-la3 for the C(S) surfaces and I4132-P4332 for the 
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Fig. 1. Skew octagon with site symmetry ~,.. -2. .  subdivided into 
eight congruent skew quadrangles forming generating polygons 
of a P surface. The coordinates of the centre and the vertices 
of the octagon refer to a conventional description of la3d. 
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Y surfaces. It had not been realized that in both cases the 
inherent symmetry of the surfaces is higher, namely l m 3 m -  
Pm3m and Pn3m-Fd3m,  respectively. As a consequence, 
C(S)  surfaces are in fact P surfaces and Y surfaces are in 
fact D surfaces (cf. Koch & Fischer, 1992). 

Fig. 1 shows a skew octagon with site symmetry ~,..-2 .. 
as was used for the generation of C(S)  surfaces. The 
octagon is subdivided by straight lines into eight congruent 
skew quadrangles and each of these quadrangles represents 
a generating polygon of a P surface as described, for 
example, in Table 2 of Fischer & Koch (1987). In fact, 
inspection of a model of the C(S)  surface shows the addi- 
tional straight lines that form the boundaries of the small 
quadrangles. 

Fig. 2 displays a skew hexagon with site symmetry 
. . 2 - . .  2 as was applied to derive the Y surfaces. The 
indicated subdivision yields eight congruent skew quad- 
rangles, each of which can be used to generate a D surface 
(cf. Table 2 of Fischer & Koch, 1987). 

The genus of the C(S)  and Y surfaces was stated to be 
9 in previous papers (see, for example, Koch & Fischer, 
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Fig. 2. Skew hexagon with site symmetry .. 2-.. 2 subdivided into 
eight congruent skew quadrangles forming generating polygons 
of a D surface. The coordinates of the centre and the vertices 
of the hexagon refer to a conventional description of I4~32. 

1988; Fischer & Koch, 1989), whereas P surfaces as well 
as D surfaces have genus 3. The difference of these values 
is caused by the different sizes of the primitive unit cells 
of Hi and H~. As the following diagrams show, the primitive 
unit cell of Hg is four times the size of Hi in both cases. 

P surface: lm3m(a)  - Pm3m(a) 
12 12 

Pm3n(a) - Pm3(a) 
14 1_4 

la~d(2a) - 1a3(2a) 

D surface: Pn3m(a) - Fd3m(2a) 
12 12 

P4232(a) - F4~32(2a) 
14 14 

I4132(2a) - P4332(2a) 

An enlargement of the unit cell by a factor of n results in 
a change of the genus g to 

g , = l + n ( g - 1 )  

as shown earlier (Fischer & Koch, 1989). The values n = 4 
and g = 3 (the genus of P and D surfaces) yield g, = 9, the 
incorrectly stated genus of C(S)  and Y surfaces. 

For all minimal balance surfaces known so far it has 
been checked that a similar error does not occur. 
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Abstract 

To a close approximation, the relative frequency of the 
space groups of molecular organic compounds is deter- 
mined by ease of packing. Kitajgorodskij, with molecular 
organic structures in mind, divided the space groups of the 
triclinic, monoclinic and orthorhombic systems into four 
categories: 'closest-packed', 'limitingly close-packed', 
'permissible' and 'impossible' [KnTa~ropo~tcKH~ (1955). 

OprauaqecKaa KpncTa.~J1OXXM~la. MocKna: H3~I. AKa~I. 
HayK; Engl. transl: Kitaigorodskii ( 1961 ). Organic Chemical 
Crystallography. New York: Consultants Bureau]. Empiri- 
cally, about a dozen of the 'impossible' space groups are 
not rare and several of them (Pc, P2/c, C2221, Fdd2 and 
possibly other orthorhombic groups) can be recategorized 
as 'permissible' on Kitajgorodskij's own criteria. In addi- 
tion, certain space groups (notably C2/c  and Pbca) requir- 
ing inherent molecular symmetry for close packing in 
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